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Abstract
Magnetic resonance has made significant contributions to the charac-

terisation of point defects and small aggregates in semiconductors. A
particularly clear demonstration of the potential of this technique
is provided by research on transition metals in silicon. Basic atomic
and electronic structural information of these centres was revealed
by magnetic resonance. Two aspects of such studies, both dealing with
the degree of covalency of the 3d transition metal impurity 4iron 1in
silicon, will be discussed in the present paper. The fine structure 1in
the electron paramagnetic resonance (EPR) spectra 1s analysed by
taking into account the crystal field of the relevant symmetry and
spin-orbit interaction. Agreement with experimental data requires sig-
nificant covalent delocalisation of impurity electrons. This 1s then
directly verified and confirmed by electron nuclear double resonance
(ENDOR) . From the hyperfine interactions with the 1ligand 29-silicon
nucleli the spin density around the impurity 1is mapped in detail. Con-
sistent with the observed delocalisation the central impurity hyper-
fine coupling 1is reduced considerably when compared with the free-ion

value.

1. Introduction

Magnetic resonance can provide detailed information on the atomic and
electronic structure of paramagnetic impurities in a diamagnetic host
crystal. By applying a magnetic field energy levels are split 1into
magnetic sublevels, an interaction known as the Zeeman effect. The
splitting is quantitatively described by the spectroscopic splitting
tensor, more commonly called the g-tensor. The tensor is usually meas-
ured by electron paramagnetic resonance (EPR). The structure of the
tensor directly provides a classification of the symmetry of the
defect in terms of a crystallographic system. The principal values of
the g-tensor will deviate from the free-electron value ge-2.0023, for
a spin S=1/2 system, if orbital contributions to the magnetism are

present. For higher values of the spin, effects of orbital momentum
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manifest themselves through «crystal fields based on higher-order
interactions. In these cases the g-values bear information on the
orbital structure of the centre. This information is, however, usually
ditfficult to extract, as knowledge on wave functions and energy levels
of ground and excited states 1is required [1]. The use of the g-tensor
to gain a detailed 1insight into defect structure 1s therefore rare.
The present paper will attempt to carry out such an analysis for the
specific case of positively charged iron in silicon.

As opposed to the fine structure with 1its related g-tensor, the
interpretation of hyperfine interactions 1is much more straightforward.
These interactions, specified by the A-tensors, can be measured with
great precision and over a wide range of coupling strengths, by the
method of electron nuclear double resonance (ENDOR). From these hyper-
fine data the distribution of spin and charge around the impurity can
be mapped 1in great detail ([2,3,4,5]. Section 3 of this paper will
present such an analysis, also for positive 1iron in silicon, and the
consistency with the results from the g-tensor data will be checked.
Besides the information based on experimental research methods, in
recent years the theoretical description of impurities in semiconduc-
tor hosts has made considerable progress. Recent calculations have
employed Green’s function methods to solve the Schrodinger equation
[6], or the multiple scattering Xa method in a molecular cluster model
[7], all in a self-consistent manner. The detailed discussion of these

results is beyond the scope of the present paper.

2. Fine structure

2.1 Axial crystal field

Iron as an impurity in silicon will occupy interstitial lattice sites.
According to the Ludwig and Woodbury model all valence electrons are
transferred to the 3d-shell [8]. In the positive charge state the iron
ion has configuration 3d7. With parallel exchange coupling of the
three holes in the d-shell the spin of the centre is S=3/2. The tri-
plet ground state has effective orbital momentum 1’=1. Iron in this
isolated form has been observed by EPR [9,10]. Besides, EPR observa-
tions have been made for complexes where iron has formed an impurity
pair with an acceptor on a substitutional lattice site [10,11,12,13].
In table I the g-tensors of these centres are given. In addition, two
other centres, A27 and A28, which appear to have a related structure,
are mentioned [14]. In all cases the analysis of the EPR spectra has

used effective spin J=1/2. As table I shows an interesting set of g-
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values, ranging from as low as 0.59 to as high as 6.389 is found in
the experiments. Their 1interpretation 1s a challenge for the

theoretical analysis.

Table I. Spectroscopic data for positive interstitial iron and related

complexes in silicon.

Centre Symmetry g-Values a Aax Arh
g, 8, 8y (meV) (meV)
Fe Cubic 3.524 3.524 3.524 -0.286 0 0
FeB Trigonal 2.0676 4.0904 4.0904 -0.256 -16 0
FeAl(l) Trigonal 6.389 1.138 1.138 -0.346 +43 0
(2) Orthorhombic-I 5.885 1.236 1.612 -0.3 +66 13
(3) Orthorhombic~-1I 1.73 2.51 5.36
FeGa(l) Trigonal 5.087 2.530 2.530 -0.284 +11 0
(2) Orthorhombic-I 6.19 0.59 0.69
(3) Orthorhombic-I 2.02 3.37 4.65
Feln Orthorhombic-I 2.070 3.78 4.40 -0.268 -16 1.3
A27 Monoclinic-I 1.96 3.24 4.78 -0.188 -13 2.
A28 Monoclinic-1I 2.15 4.10 4.20 -0.360 -18 0.3

Table II. Spectroscopic data for positive 1interstitial 1iron and

related complexes in silicon, in axial approximation.

Centre Symmetry g-Values a X Aax/ak Aax
g, g, (meV)
Fe Cubic 3.524 3.524 -0.286 2 0 0
FeB Trigonal 2.0676 4.0904 -0.256 7.513 -4.44 -16
FeAl(l) Trigonal 6.389 1.138 -0.346 0.318 +8.71 +43
(2) Orthorhombic-I 5.885 1.424 -0.165 0.420 +7.08 +17
(3) Orthorhombic-I 1.73 3.935
FeGa(l) Trigonal 5.087 2.530 -0.284 0.933 +2.61 +11
(2) oOrthorhombic-I 6.19 0.64 -0.140 0.170 +17.91 +36
(3) Orthorhombic-I 2.02 4.01
Feln Orthorhombic-I 2.070 4.09 -0.256 7.444 -4.40 -16
A27 Monoclinic-1I 1.96 4.01 - - - -

A28 Monoclinic-1I 2.15 4.15 -0.360 6.029 -3.52 -18
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g-value g is defined as g, = (gx + gy)/2. The resulting data are
found 1in table II. The more general case taking account of the
orthorhombic or monoclinic symmetry, which requires computer methods
to be solved, will be discussed more briefly in paragraph 2.2. ’
Figure 1 presents a schematic energy level diagram of positive iron,
electronic configuration 3d7, on an interstitial site in a silicon
crystal. The free-ion ground state 4F is split by the cubic crystal
field (cf) leaving a 12-fold degenerate aTl state lowest. In complexes
of 1lower than cubic symmetry the crystal field, of trigonal or
orthorhombic symmetry, will further split this level. Spin-orbit (so)
interaction will finally 1ift the four-fold spin degeneracy, resulting
in the splitting of the 4T1 level 1into six Kramers doublets. These

interactions are represented by the spin-hamiltonian H:

= +
H=He+ o D
H . = +A._(2/3 - 122 (2)
cf ax z >
H = +aA(l’s + 1’s + 1’s ). (3)
so X X y'y z 2z
4

The hamiltonian will operate on the twelve basis states of the T1
ground state in cubic symmetry. This state which is orbitally three-
fold degenerate, will have an effective angular momentum 1’=1. The
associated orbital g-factor giving the magnetic moment has the
theoretical value a=-3/2. To find eigenstates and corresponding ener-
gles the 12x12 matrix <aT1|Hl4T1> has to be diagonalised. Due to the
Kramers degeneracy there are actually two identical 6x6 matrices.
These are found from table III by setting Arh equal to zero. By form-
ing suitable linear combinations the matrix can be decomposed into one
cubic, one quadratic and one linear matrix, as specified in table 1IV.
The solution of the associated eigenvalue equations does not present
any special problem. The energiles E1 to E6 of the doublets as a func-
tion of the axial field strength Aax’ both in units al, are presented
as figure 2. For {1iron 1in 3d7 configuration the spin-orbit coupling
constant A is negative. Having found these solutions the effect of a
magnetic field B can now be evaluated. The hamiltonian of the Zeeman
effect, treated as a small perturbation on the doublets, has the orbi-

tal and spin parts

- ") E-¢
Hmf +apBB 1’ + Zan S. (4)
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Table TIII. Matrix elements of the «crystalline field, axial and

orthorhombic, and spin-orbit coupling in the ATl state.

|-x,+3/2> |iy,+3/2> |-x,-1/2> |1y,-1/2> |+z,-3/2> |+z,+1/2>
|+x,=-3/2> |iy,-3/2> |+x,+1/2> |iy,+1/2> |+z,+3/2> |+z,-1/2>
<-x,+3/2]
-A_,-A_ /3 =3ar/2 0 0 0 -/3ar/2
<+x,-3/2]| rh “Tax
<-iy,+3/2]
-3aN2 +A__-A__/3 0 0 0 -vY3a)/2
<-1y,-3/2] rh “ax
<-x,-1/2]
0 0 -A_,-A_ /3 +ar/2 -vY3ar/2 +a\
<+x,+1/2| rh “ax
<-1y,-1/2]
0 0 +ar/2  +A . -A /3 =/3aN/2 -ak
<-iy,+1/2| rh “ax
<+z,-3/2]
0 0 -/3aN2 -vY3ar2  +2A__/3 0
<+z,+3/2] ax
<+z,+1/2|
-/3ar/2 -/3an/2 +ai -ak 0 +24A /3
<+z,-1/2| ax

The magnetic field will 1ift the remaining Kramers degeneracy 1in the
doublets as shown in figure 1. Usually, the magnetic resonance experi-
ment is carried out between the 1levels originating from the ground
state doublet. Figure 2 shows that 1irrespective of the sign or
strength of the axial field the doublet E1 always has lowest energy.
For this ground state, which 1s derived from the cubic equation, the
results for the g-tensor are summarised by

Aax/ak = —(x=2)(x+1)(x+6)/2x(x+2), (5)

E/ah = ~(x +5x2+13x+6)/3x(x+2), (6)

g, - 12 [x Hax 4 14x2472x47242 a(x2-12x-12) ] / (x*+4x0+18x24+264x+24), (7)

g, = +4[x4+4x3+16x2+24x—2axz(x+2)]/(x4+4x3+18x2+24x+24). (8)
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Fig. 2 Energy positions E , in units al, of the six Kramers doublets,
labelled n=1,...,6, as a "function of the trigonal crystal field, in
reduced units Aax/ak.
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Table IV. Matrix elements of the axial crystalline field and spin-

orbit coupling in modified Arl states.

|-1,+3/2> |o,+1/2> |+1,-1/2>
[+1,-3/2> lo,-1/2> |-1,+1/2>
<_1’+3/2
! -A_ /3 - 3ar/2 +7/6 an/2 0
<+1,-3/2]| ax
< 0,+1/2
. I +v/6ar/2 +24A /3 +v72 a)
< 0,-1/2] ax
<+1,-1/2
| 0 +7/2a) -A /3 - aN2
<-1,+1/2]| ax
| 0,+3/2> |+1,+1/2>
| 0,-3/2> |-1,-1/2>
< 0,+3/2
/2] +2A__/3 +/6 an/2
< 0,-3/2] ax
<+1,+1/2
! +/6ar/2 -A /3 + ar/2
<-1,-1/2| ax
|+1,+3/2>
|-1,-3/2>
<+1,+3/2
! -5 /3 + 3an/2
<-1,-3/2| ax

The dummy variable x relates the axial field Aax to energy and g-
values. A useful way to represent the result is the elimination of x
between the equations (7) and (8), obtaining a direct relation between
g, and g,- A graphical representation of the result is given in figure
3. The special case of cubic symmetry, with Aax-o and x=2, leads to
8H-81.13/3' and is applicable for 1isolated interstitial iron. In the
upper left corner of the plot the solutions for Aax/ak<0, when the
singulet level forms the ground state, are shown. The lower right part
gives the solutions corresponding to Aax/ah>0 and the 4E doublet
ground state. Included in the figure are also the experimental data
points, as taken from table II. Although a tendency of the measured
g-values to follow the theoretical relationship is apparent, not an
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entirely satisfactory agreement 1is observed. The discrepancy may be
expiained by a reduction of the orbital contribution to the magnetism.
Complete quenching, expressed by a=0 in the formulas and in figure 3,
leads to an underestimation of the g-values. Another curve, for o=-1
can also be justified theoretically, as will be discussed in paragraph
2.4. A best agreement is obtained for the empirical value of the orbi-

tal g-factor a=-(0.3+0.05).

Fig. 3 Theoretical relations and experimental data for the Zeeman
splitting factors g, and 81 for a 3d7iron ion in an axial crystal

field.

Some special attention may be given to the data points close to
g.-z, 31-4. The significance of these points may be questioned, as 1t
is known that a spin quartet split by a strong axial field will always
yield one doublet with g'=ge=2 and g1=23e=4’ in the J=1/2 formalism.
To check more carefully on this aspect, the portion of figure 3 near

g'-Z and gl-A is shown 1in close-up in figure 4. It shows clearly that
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also the data points for these cases require a value @=-0.3 for their
interpretation.

Having selected the value a=-0.3 an alternative way of representing
the results 1is shown as figure 5. Again, of course, the agreement is

apparent. Values for Aax/ak for which this agreement 1s obtained can

a=-15 -
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Fig. 4 Theoretical relations and experimental data for the Zeeman
splitting factors g, and g, for a 3d’ iron ion in a large axial

crystal field with Aax/aMO.

be read from the bottom scale. In table II the results of the analysis
are summarised. To calculate the axial field Aax the value A=-14.3 meV
was used for the spin-orbit coupling constant [15]. In the analysis as
presented the two unknown quantities a and x, or alternatively a and
A , are calculated from the measured quantities gl and gl. If the

ax
equations allow for a solution, the agreement will then be exact.
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Fig. 5 Theoretical and experimental Zeeman splitting factors g and
g, as a function of the axial crystal field, for an effective orLital

g=factor a=-0.3.

2.2 Orthorhombic crystal field
For this more general case the crystal field Hamiltonian Hcf takes the

form

- 112 32_152
Hcf +Aax(2/3 1z ) + Arh(lx ly )s %)

replacing equation (2). Operation of the orthorhombic hamiltonian on
the basis states of 4T1 will produce the matrixelements of table III.
For solution of the eigenvalue equation numerical methods are

required. A solution for the eigenstates can be written as
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|+>=a]-x,+3/2>+b|1y,+3/2>+c|-x,-1/2>+d|iy,-1/2>+e|+z,-3/2>+f |+z,+1/2>,
(10)

|=>=a|+x,-3/2>+b|1y,=3/2>+c|+x,+1/2>+d |1y, +1/2>+e|+z,+3/2>+f |+z,-1/2>.
an

In terms of the coefficients a to f the principal g-values are derived

as:

g = 2(+|(+a1;+2sx)|->=|-4c?+4d2+4f2—4/3ac+4/3bd+4/3ef—a(4be+4df)|, (12)

gy=2i<+|(+a1;+25y)|~>=|+4c2-4d2+4f2-4/3ac+4/3bd—4/3ef+a(bae+4cf)|, (13)

2

g," 2<+](+al;+ZSz)|+>=|+632+6b2—2c2—2d2-6e +2f2—a(4ab+4cd)|. (14)
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Fig. 6 Theoretical relations and experimental data for the Zeeman

splitting factors near (g ,8 ,g8 ) = (4,4,2), as a function of axial
and orthorhombic crystalx fxelﬁs, for effective orbital g-factor

a=-0.3.
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Again the number of unknowns to be determined, 1i.e. Aax, Arh and «
equals the number of equations to be satisfied, i.e. for g , g and
g - In the region near (gx,g ,gz)=(4,4,2) the solution 1is n:;eriially
stable. This can be {i{llustrated by reference to the figures 4 and 6.
From figure 6 it 1is concluded that Arh is mainly determined by the
difference g -gx, rather 1independent of gz. The average value of
gx and g essentially determines the factor a. The effects of «a,
Aax’ and Arh are sufficiently orthogonal to allow the accurate deter-
mination of the parameters from the g-values. As a result the unambi-
guous solutions as given in table I are obtained for the centres A27,
A28 and FeIn. The former centre for which it was not possible to find
a solution in the axial approximation does not present any difficulty
using the generalised crystal field of equation (9). The analysis of
these orthorhombic and monoclinic centres confirms the reduced g-
factor a=-0.3. Unfortunately, in other regions of the parameter space
the magnitude of a is strongly correlated with the crystal fields, and
unambiguous solutions can not be obtained. For instance, the parame-
ters a=-0.3, Aax=+66 meV and Arh=+13 meV result in gx=1.240, gy=1.609
and gz=5.885. On the other hand, the quite different parameter selec-
tion a=-1.5, Aax-1579 meV and Ath=390 meV gives gx=1.238, gy-1.611 and
gz-5.885, representing a fit with comparable good agreement for the
FeAl(2) spectrum. In these cases therefore the argument 1is reversed
by requiring a=-0.3 for consistency with other results. The crystal

field parameters can then be determined.

2.3 Excited states

In figure 2 the energy levels are shown in their dependence on axial
field and spin-orbit interaction. For positive values of the reduced
axial field Aax/ah the four doublets derived from the 4E state are
lowest 1in energy. For large values of the crystal field the 1levels
approach equal separation by the amount aA. With the results of the
previous analysis, a=-0.3 and A\=-14.3 meV, this can be estimated as
4.3 meV, or T=50K in temperature units. Except at the lowest tempera-
tures, the excited 1levels EZ’ E4 and E6 may become appreciably popu-
lated thermally and resonance in them may be observable. For negative
axial field the excited level E even tends to coincide with the

4

ground level El. Under such conditions the observation of resonances

in both doublets derived from the AAI spin quartet may be expected.
Also, the assumption of small Zeeman energies compared to the doublet
separation may then break down. This is more quantitatively discussed

by Gehlhoff, et al. [13]. These authors actually report resonances in
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excited doublets for FeAl, FeGa and possibly Feln.

2.4 Orbital g-factor

Obviously, the selection on empirical grounds of a strongly reduced
effective orbital g-factor a=-0.3 needs justification. The theoretical
value a=-3/2 reflects the transformation properties of a pure ATl
ground state in cubic symmetry. Any deviation from this description
may lead to changes in a. In a first attempt the quenching of orbital
momentum due to Jahn-Teller distortion may be considered. For isolated
interstitial iron, which has cubic symmetry, with Aax=0 and x=2 1in
equation (5), the theoretical g-value' g=(10/3)-(2/3)a ranges from
g=13/3 for a=-3/2 without any quenching, to a=0 and g=10/3 for com-
plete quenching of the orbital moment. The experimental value g=3.524
thus corresponds to a=-0.286 or 81%Z quenching. This reduction observed
for iron in undistorted cubic symmetry was explained by Ham in a clas-
sical paper as a manifestation of a dynamical Jahn-Teller effect of
the 4'1'1 orbital triplet state [16]. Applying this concept to the pairs
FeGa and FeAl one notes that also for these centres the successful
analysis requires a=-0.3. It is considered remarkable that these pairs
with an E doublet ground state experience an equal Ham reduction fac-
tor as the triplet state for iron. Even more surprisingly, the pairs
FeB, FelIn, and the A27 and A28 defects also have a=-0.3. Since these
centres have an A2 orbital singulet ground state no Jahn-Teller insta-
bility and associated quenching 1s expected. On the basis of these
results the Jahn-Teller mechanism as an explanation for the reduction
of a appears unlikely. A recent theoretical analysis confirms this
conclusion [17].

Modification of the ground state wave function by hybridisation offers
another explanation for the reduction of «. Besides 1lifting the
degeneracy of the AF free-ion ground state, the cubic field also has
matrixelements between the AF and AP terms. Some p-character, derived
from the aP term, will be admixed to the aTl ground state [18]. An

improved expression for the wave function is thus of the form
b = np gty by (15)

normalised by ﬂ§+ﬂ§'1- The effective orbital g-factor associated with

the hybridised wave function is
a = =(3/2) 4. (16)

Admixture of p-functions through the cubic field has a maximum n§-0.2.
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Corresponding to this maximum, equation (16) gives a lower 1limit of -1
for o. Therefore, the effect of hybridisation, 1leading to -3/25&5-1,
may account for a reduction of a, but its possible effect is too—small
to fully explain the observed reduction to -0.3. In addition, the
lower 1limit a=-1 corresponds to an 1infinite cubic field. A more
realistic estimate for the cubic field may give it a strength compar-
able to the AP—AF splitting, which equals =1.4 eV [19]. This estimate
raises the lower limit of o to =-1.4.

Along similar 1lines the effect on the ground state wave function by
covalent hybridisation with host atoms may be examined. Although the
defect electrons will certainly be found in the impurity space, appre-
ciable covalent delocalisation may occur. A recent experiment in which
the electron distribution around the positive ironm 1ion in silicon was
measured by electron nuclear double resonance will be discussed in
section 3 of this paper [20]. A suitable wave function may be con-

structed as a linear combination of 3d iron and ligand silicon orbi-

tals:
b= g dpt gy dgyo (17)

again normalised by n§e+n§i-1. In the impurity space the electrons
will be described mainly by d-electrons with @=-3/2 and, for iron, a
spin-orbit coupling constant A=-14.3 meV [15]. In the crystal around
the 1impurity the 3p orbitals on the silicon atoms appearing 1in the
expansion (17) will have a=+1 and A=-20 meV [21]. The effective orbi-

tal g-factor may be approximated by the weighted average
2 2
« (3/2)nFe+nSi. (18)

Agreement with the measured value a=-0.3 1is obtained for n§i=0.48.
This numerical example shows that the reduced orbital contribution can

be understood by assuming considerable covalent delocalisation.

3. Hyperfine structure

3.1 LCAO analysis

To analyse the hyperfine interactions the one-electron wave function
for the unpaired electrons 1is expanded in atomic orbitals, as indi-
cated schematically in equation (17). At the central site the 3d orbi-
tals of the iron impurity are included. The term n51¢51 actually 1is a
summation over hybrid 3s3p orbitals centered on silicon sites sur-

rounding the impurity. For the analysis it is appropriate to decompose
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the measured hyperfine interaction tensor K' into an 1sotropic part
a-?, with a-(1/3)Tr(X), and the remaining anisotropic tensor f. The
isotropic interaction a with a particular nucleus can then be related
to contact spin density |¢(r)|2 on the site r of that nucleus. This 1is

expressed by:
a = (2/3)u g gy ugl 6|2, (19)

Anisotropic tensor ¥ results from dipole-dipole interaction between
the nucleus and electronic spin in the silicon 3p orbitals. The prin-
cipal values of this axial tensor (2b,-b,-b) are related to the 3p-
orbitals by

-3

b (2/5)(po/4ﬂ)gegNquN<r >3p. (20)

Relations (19) and (20) allow the calculation of l(Mr)Iz and <r—3>3p
valid for the defect electron wave function from the measured a and b.
By comparison with tabulated atomic values for fully occupied orbi-

tals [22] the coefficients in the expansion are obtained.

3.2 Impurity ENDOR
With the 1iron 1ion, {.e. with the 57-iron 1isotope which has nuclear

spin I=1/2, the observed hyperfine interaction 1is 1isotropic. Its

1 has been measured accurately by ENDOR [23].

With equation (19) one finds |¢(0)|2-0.ZSX1030 m_3, which 1s very
small in comparison to the free-ion value |¢(0)|2-5.GSXI030 m-3. It

leads to the conclusion that only about 52 of the electrons 1s accom-

strength a-2.985x10_4 cm

modated in impurity orbitals. This result should, however, be con-
sidered with some reserve. The 1impurity d-orbitals themselves do not
have any contact density. Their effect 1is only indirect through spin
polarisation of the s-electrons in the core. Calculations of this pro-
cess were performed by Watson and Freeman [24]. The accuracy of such

calculations 1is not well known.

3.3 Ligand ENDOR

In a recent experiment the hyperfine interactions with 2951 nuclei
near the iron impurity were accurately measured by ENDOR [20]. The
interactions with 98 atoms in 8 shells of symmetry related sites
around the centre were resolved. Analysing these data 1in a one-
electron model, using the equations (19) and (20), the coefficients of
the expansion in silicon 3s and 3p orbitals are obtained. The total
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amount of spin density transferred to the surrounding crystal space 1is
found to be 26%, indicating substantial covalency. More than 902 of
this spin density is in silicon 3p orbitals. However, adding spin den-
sities on {impurity and silicon sites, one concludes that only Jjust
over 302 of the electrons have been revealed in the ENDOR experiment.
This can be understood as ENDOR measures spin density whereas charge
density is required. Spin, being a vector quantity, may cancel for
different electrons, while charge directly adds. A measurement of spin
density may therefore severely underestimate charge density. The fig-

ure of 26% reported above represents a lower limit.

4. Conclusion

An analysis of the fine structure, measured by electron spin reso-
nance, and of the hyperfine structure, obtained from electron nuclear
double resonance, for the positively charged interstitial iron 1impur-
ity in silicon was presented. The g-values describing the Zeeman
splitting of the 1impurity, either in 1isolated form or as part of a
complex, could be understood by considering the action of crystal
field and spin-orbit coupling on the ATI ground state of a 3d7 confi-
guration. The reduction of the orbital g-value 1is most 1likely not
related to Jahn-Teller distortions, nor to intra-atomic hybridisation
on the impurity. Covalent delocalisation of the defect electrons over
silicon atoms in the vicinity of the impurity may have the predominant
effect. The picture of substantial covalent character is supported by
the low spin density found by ENDOR on the iron ion. In addition, the
extended distribution of electrons over lattice atoms 1is evidenced by
observations in ENDOR of hyperfine interactions with 98 silicon atoms.
The accurate mapping of spatial extent of the wave function is unfor-
tunately severely hampered by differences between the spin and charge

distribution, which are apparent for this many-electron system.
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